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An Emulation-Based Approach
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• BGP Convergence is still hampered by problems
more than 20 years old, but the difficulty of
properly modeling or experimenting with BGP
slows down research: this paper shows how
the appropriate use of large scale testbeds like
Fed4FIRE+ can help overcome the problem.

• Exploiting topological properties of the global
organization of the Internet (at the AS/ISP
level) such as centrality metrics, this work
shows that global Internet convergence can be
improved significantly.

• For the first time some possible unstable behav-
iors of BGP studied in the past with heuristic
models has been validated in a real implemen-
tation of BGP.

• Internet-like topologies with up to 12 000
Autonomous Systems have been emulated on
a testbed using BIRD an Open Source BGP
implementation.
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Abstract

Modifying protocols that pertain to global Internet control is extremely challenging, because experimentation
is almost impossible and both analytic and simulation models are not detailed and accurate enough to
guarantee that changes will not affect negatively the Internet. Federated testbeds like the ones offered
by the Fed4FIRE+ project offer a different solution: off-line Internet-scale experiments with thousands of
Autonomous Systems (ASes). This work exploits Fed4FIRE+ for a large-scale experimental analysis of Border
Gateway Protocol (BGP) convergence time under different hypothesis of Minimum Route Advertisement
Interval (MRAI) setting, including an original proposal to improve its management by dynamically setting
MRAI based on the topological position of the ASes in relation to the specific route being advertised with
the UPDATE messages. MRAI is a timer that regulates the frequency of successive UPDATE messages sent
by a BGP router to a specific peer for a given destination. Its large default value significantly slows down
convergence after path changes, but its uncoordinated reduction can trigger storms of UPDATE messages and
unstable behaviors known as route flapping. The work is based on standard-compliant modifications of the
BIRD BGP daemon and shows the tradeoffs between convergence time and signaling overhead with different
management techniques.
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1. Introduction

The Border Gateway Protocol (BGP) is the only
protocol available to implement the routing function
at the Autonomous System (AS) scale. The border
routers of ASes use BGP to export their prefixes
and to propagate other prefixes, and its path-vector
approach allows the Internet to function in a stable
way. While BGP evolved in some of its features,
(notably, the security aspects) the way it reaches
convergence is essentially the same as in its original
design despite its known limitations. The reason for
this ossification is twofold, the first is that operators
are very cautious when considering changes to the
component that is critical for the whole Internet,
the second is that we cannot experiment at scale

with BGP, and so it is hard to test the effects of
new proposals. As a result, BGP evolves slowly.

One explanatory example is the notorious slow
convergence of BGP, due to the presence of the Min-
imum Route Advertisement Interval (MRAI) timer.
When there is a change in the Internet topology,
BGP will propagate the information on the new
topology using UPDATE messages. Without MRAI
this may generate a storm of UPDATE messages in a
very short time, each triggering the recomputation
of routing tables and ultimately clogging the routers.
MRAI prevents this flood by allowing the propaga-
tion of only one UPDATE message for every MRAI
interval, with the obvious side-effect of slowing down
the convergence.

For this reason the value of MRAI has been a
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subject of discussion in the literature. As we show
in the review of the state of the art (Section 2) its
default value was initially set to 30 s and then, in
absence of an agreement, it was left to the deci-
sion of the network operator1. Finding an optimal
value for MRAI would have a huge positive impact
on the performance of BGP, however, Fabrikant,
Rexford et al. [2] showed that modifying MRAI in
an uncoordinated way, can lead in specific cases to
the exponential growth of the number of UPDATE
messages required to achieve a new stability point
after a route change, that is, the opposite of what
MRAI should achieve. We detail this problem (Sec-
tion 3) to show that more than ten years later we
are still in this deadlock: we know that MRAI needs
to be optimized, but we also know that changing it
without coordination may make things worse, and
of course, there is no way to coordinate all the net-
work administrators of all ASes to take a certain
decision. This example shows the inherent hardness
of researching on BGP, it is way too complex to
attempt an overall theoretical modeling, simulation
approaches are limited because they capture only a
part of the complexity of the system, and emulation
approaches, so far, could not reach the necessary
scale to validate proposals.

Our work has the ambition to show that it is
possible to experiment with a real implementation
of BGP, namely BGP Internet Routing Daemon
(BIRD)2, reproducing with a real implementation
and measures the results from Fabrikant et al. [2].
We also propose a strategy that allows the improve-
ment of the convergence of BGP without hamper-
ing its stability (Section 4), and we evaluate it on
emulated networks made of tens of thousands of
BGP routers using a fully reproducible approach
(Section 5). This paper extends and completes a
previous work by the same authors [3] using data
we could obtain in the frame of the Fed4FIRE+
project, which supported our work. In short, the
three contribution of out paper are the following
ones.

Confirm Fabrikant Results. We use our emulation
framework to confirm Fabrikant’s results, which is
key to understanding the risks associated to dy-

1As a relevant example, Cisco suggests 30 s MRAI for any
regular Exterior BGP (eBGP) peer [1].

2BIRD is one of the most used and well maintained BGP
open source implementations, used in many real world sce-
narios see https://bird.nic.cz/en/case-studies/

namically setting MRAI. We reproduce and confirm
Fabrikant observation in Section 6.1;

Propose and Test a dynamic MRAI configuration
strategy. We provide the initial design of a strategy
to dynamically set MRAI. We show experimentally
that our approach improves the performances of
the standard BGP configuration in terms of conver-
gence time, with a limited penalty in the number
of generated UPDATE messages (Section 6.2). We
achieve such results applying a custom propagation
timer that can be computed by each node cooper-
atively with the others, without requiring global
coordination.

Provide a scalable and repeatable BGP experimen-
tation framework. This paper uses an experimental
approach that enables the emulation of networks
made of tens of thousands of routers, in order to
compare different approaches on real code. While
in our previous work [3] we already provided all
the details to reproduce our results, in this work
we increase the size of our emulated network of a
factor of 3, and we add the description to the two
open source components and one protocol exten-
sion we developed to make our experiments possible
(Section 7):

• The implementation of MRAI in the open
source BIRD daemon, that was missing. The
source code is available in the open-sourced
project repository and it will be forwarded to
the BIRD community for consideration.

• The implementation of an Internet-like topol-
ogy generator that creates graphs that respect
the characteristics of the Internet, including
commercial relationships between ASes. Our
code is realized in the Python language and
has become an integral part of the well known
NetworkX Python library.

• Since our proposal includes a modification to
the BGP protocol using a custom extension, we
also document its design and show that it can be
deployed incrementally on the Internet, which
is a key requirement for a realistic solution.3

Overall, our work showcases how the availability
of a large scale testbed not only leads to viable pro-
posals for long-standing research issues, but it also

3See https://iof.disi.unitn.it, and the related github
repository https://github.com/internetonfire
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enables the development of open source code that
ultimately benefits the community of the researchers
and practitioners.

2. State of the Art

Albeit their extreme importance, global routing
and BGP have never been a ‘hot topic’, often per-
ceived more as a management issue relevant only for
providers, even if the slow convergence of BGP is a
problem that may affect the entire Internet, and con-
sequently the ‘digital life’ of people. Clearly there
exist several papers dealing with BGP and its char-
acteristics and features (see [4] and citations therein
or [5] to name a few), but the core itself of BGP, i.e.,
the Path Vector descriptors exchanged by eBGP
routers, and the policy-based routing algorithms, do
not lend themselves to rigorous theoretical analysis
and modeling, thus preventing elegant and sound
theoretical results similar to those available for link
state and distance vector routing protocols. Indeed,
the seminal works by Labovitz et al. at the beginning
of this century [6, 7] clearly identified BGP as a ma-
jor source of Internet failures and disruptions, and
also discussed some possible modifications to BGP
to improve it. In the following years some works
[8, 9] measured and quantified the phenomenon in
the Internet, proving that it was real and also po-
tentially very penalizing. After more than 20 years,
however, most of the issues are still there.

BGP research has traditionally been based on
simulations [10, 11, 12] and/or small-scale testbeds
[13, 14], with a few works like the already cited
paper by Fabrikant et al.[2], addressing specific is-
sues with a theoretical analysis based on heuristics
considerations on BGP dynamics. Other significant
works on the subject are based on measures, like
the seminal analysis in [15], that clearly identifies
the key role of BGP in properties and performance
of the global Internet, or [16, 17] analyzing prefix
scaling and router ownership boundaries, but they
normally document the behavior or the properties
and consequences of BGP rather than exploring
possible improvements; the PEERING testbed [18]
offers an infrastructure to experiment with BGP,
but does not seem prone to explore performance or
major protocol modifications.

One of the prominent themes in this body of litera-
ture is the trade-off between the generated overhead
and the convergence speed of BGP after a reconfig-
uration event. BGP is known to be subject to path
exploration, a transitory phenomenon that happens

when a router adopts and publishes a sequence of
non-optimal paths for a destination before reaching
a stable state. Path exploration can generate thou-
sands of update messages in networks made of as
few as tens of nodes [19]. In order to reduce the
message overhead, BGP uses MRAI, the minimum
time between two consecutive UPDATE for the same
destination sent to the same neighbor, which is set
by default to 30 s [20]. MRAI reduces the overhead
but strongly impacts BGP convergence [21] and its
default value was often discussed [22].

Difficulties and a negative result, however, cannot
be a reason to stop seeking solutions. As noted in
[23], which studies the effect of disabling the use of
MRAI in part of the ASes of the Internet, in the
past 10 years the computing capability of routers
increased 8-fold, giving routers the possibility of im-
prove processing, but MRAI default timer has not
been changed. The authors of this work notice that
it is possible to disable MRAI in nearly 90% of ASes
without incurring in instabilities, thus improving
the convergence speed of BGP at the cost of addi-
tional processing of routing messages (they must
be processed faster and in bursts), but without a
large increases in the number of messages exchanged.
Also this study is based on simulations.

Some older studies like [24, 25] suggested that
MRAI could be disabled altogether, but later works
have clearly shown that this may lead to instabili-
ties. The authors of [26], for instance, acknowledge
that fiddling with MRAI can cause routing message
bursts and propose to disperse routing messages in
case of bursts to distribute the management load
among different routers and ASes. Also [27] propose
heuristics to adapt MRAI dynamically and shows
via simulations as the previous ones, that conver-
gence can be improved while keeping the number or
messages similar to BGP with constant 30 s MRAI.

Several other work including [28, 29, 30] make var-
ious proposals to improve BGP performance, reduce
convergence times, or reduce route flapping.

Finally, the authors of [31] attempted a general
modeling of Path Vector routing protocols analyz-
ing what are the key parameters and the influence
of network delays on the convergence speed and
properties. This study confirms all the hints and
indications of other works.

3. The Problem of MRAI Configuration

MRAI is the key parameter used by BGP to pre-
vent signaling storms when there are changes in the
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Symbol Meaning

V set of all the nodes of the BGP
graph, i.e., ASes

E set of the logical links between
BGP nodes

G(V, E) BGP network graph
ei,j edge, i.e., logical link between

nodes i and j
d, D destinations (prefixes), set of

all destinations
D set of ASes that export at least

one destination d
dr set of ASes that, generating an

UPDATE, cause maximal route
reconfiguration

Ni set of node i neighbors or peers
τ(j, d) value of MRAI used by a node

for destination d and neighbor
j

GA(VGA , EGA) the ‘ascending’ portion of
G(V, E)

VGA set of nodes in the ‘ascending’
portion of G(V, E)

EGA set of edges in the ‘ascending’
portion of G(V, E)

GT (VGT , EGT ) the fully connected sub-graph
of Tier-1 ASes in G(V, E)

GD(VGD , EGD ) the ‘descending’ portion of
G(V, E)

∆(v) normalized Destination Partial
Centrality (DPC) of node v

Table 1: Main symbols and notation used in the paper.

Internet routing. These storms can be triggered
simply because different routers send signaling mes-
sages at different times, and this, without proper
countermeasures can lead to an exponential growth
of messages, specially in case of uncoordinated and
non managed signaling generation. For an in-dept
description the reader can refer to the work by Fab-
rikant et al. [2], here we provide only the elementary
description to understand the phenomenon.

We model a BGP network as a connected, di-
rected graph G(V, E); i ∈ V are BGP instances (also
routers for simplicity – see Table 1 for the notation
used in the paper). The edges e ∈ E are the BGP
relationships between ASes, thus the logical links
between BGP instances. An edge ei,j can be, for
instance, a peering relation or a customer-provider

one. Regardless the commercial relation, if ei,j ex-
ists, then i and j are called peers and Ni is the set
of BGP peers of router i.

Routers export network prefixes to other routers
with UPDATE messages and cancel them with
WITHDRAWAL messages. Prefixes populate the Rout-
ing Information Base (RIB) of BGP instances and
are properly propagated to all routers in the ASes
in order to deliver the packets with a certain desti-
nation IP, and this justify the simplification of col-
lapsing an entire AS into a single node i in G(V, E).
As a destination IP address is always mapped onto
a prefix, we use the terms prefix and destination in-
terchangeably. Every UPDATE contains information
about one or more destinations. Considering a set D
that represents the prefixes that can be advertised
on the Internet, then the UPDATE describes a route
r as the combination of destination and attributes:
r = (ξ, d), where the last element of this tuple is a
destination network d ∈ D, while ξ represents the
attribute list: the path (a sequence of ASes), and a
unique ID of the originator router that we skip in
our notation for the sake of simplicity.

A router i uses a function Γ(r) that outputs a
score for the route received by peer j based on
a local policy. Given two routes r1 and r2, r1 is
preferable if Γ(r1) > Γ(r2) and r2 otherwise. When
Γ(r1) = Γ(r2) BGP provides a tie-breaking proce-
dure described in [20]. The simplest form of policy,
that we use in our emulation, takes into considera-
tion the commercial relationships between i and j
and the (possibly weighted) length of the AS path
indicated in the attributes ξ.

When a router updates its routing table, it also
schedules a new UPDATE message to propagate the
information. However, when the Internet topol-
ogy changes a router will receive UPDATE messages
through multiple paths, and may update its routing
table several times before it converges to the route r
with the highest score. In principle, every modifica-
tion may generate a new UPDATE possibly containing
transient information that will be superseded by the
next UPDATE. Such a storm of UPDATE messages may
overload the processing capability of the routers.

BGP takles this problem with the MRAI timer,
that limits the rate of outgoing UPDATE messages
from a router. MRAI is generally set to 30 seconds
(plus a small random value to avoid synchroniza-
tions), as described in [20] and can be implemented
per peer j or per peer j and per destination d. We
consider the second, more fine-grained approach,
which is also the suggested solution in [20]: a router

4



i uses a separate timer for each peer j ∈ Ni and
for each destination d, initialized to τ(j, d). Con-
sider the case in which router i receives an UPDATE
including a route r for destination d. If the new
route changes the routing table of i and triggers
the generation of a new UPDATE towards one of its
peers j, the UPDATE is sent immediately, and the
MRAI timer is started. During this period UPDATE
messages from any peer k may change again the
routing table of i and may trigger the generation of
another UPDATE towards j, however, the updates are
not sent. When the MRAI timer fires, if the routing
table was affected with respect to the last update
sent j, the node advertises the new best option. The
routes that have been received but not chosen as
the best ones, are kept in a queue and can be used,
for example, as backups in case of changes in the
network. Since UPDATE messages generally arrive
in bursts, MRAI does not affect the generation of
the first UPDATE, but slows down the generation of
the following ones, avoiding UPDATE flooding and
possible route flapping. The larger is MRAI the less
is the number of UPDATE generated, but also the
slower is the convergence of the entire network.

3.1. Exponential Path Exploration
The management of the MRAI timer does not

come without controversies. In 2008, thanks to
different studies that take into consideration the di-
mension of the topology and the latency [32], there
has been an Internet Draft proposal to reduce its
default value to 5 s [33]. In 2011, a follow-up Inter-
net Draft [22] proposed to let operators choose an
arbitrary MRAI value for UPDATE messages, while
on the other hand WITHDRAWAL could completely ig-
nore it. None of these Drafts was approved in the
end.

The idea that each operator can decide how re-
sponsive to changes its system is was appealing, but
the study presented by Fabrikant et al. showed also
how this can be harmful for the overall network [2]:
this study presents a theoretical result where, with
particular configurations of MRAI timers and re-
alistic topologies, there is an exponential path ex-
ploration behavior. This translates into very long
convergence time, but most of all, many messages
wasting the computational power of routers with a
risk of collapse.

Figure 1 shows an example of such particular
graphs. This issue happens when there are multi-
ple paths leading to the destination and a specific
sequence of timers τ(j, d) in the propagation path.

d X0 X1 X2 X3

Y1 Y2 Y3

1

0
1 1 1

0 0 0

Figure 1: Gadget topology derived from [2] with 3 rings

Let’s assume BGP has converged, so that all
MRAI timers are off and all the nodes can freely
propagate messages. X0 is the entry point for the
destination d that is to be announced through the
network. Each node assigns value to a path read-
ing the labels on the edges going from left to right
and interpreting them as a binary number. The
higher the value of a path, the higher the preference.
For example, node X0 prefers the edge with label
1, and X3 prefers the path X3, X2, X1, X0, d over
the path X3, X2, Y2, X1, X0, d because the first one
would be assigned a value of 1111b = 15d, while
the second 1101b = 13d. At a certain instant t0 the
node X0 changes the route towards d selecting the
edge with label 0 (for instance because the other
edge is broken) and propagates such UPDATE to both
X1 and Y1 at the same time. At this point in time
node X1 knows the new path through X0 and the
old one passing through Y1. This old path is not
available anymore, but X1 is not aware of it, so it
decides to reach the destination d using the out-
dated path through its neighbor Y 1, as that path
has a higher score (10b) than the newly received
one going directly through X0 (01b). X1 will then
propagate at time t1 the change to its neighbors
with an UPDATE and initialize two MRAI timers to
τ(X2, d) and τ(Y2, d). Roughly at the same time
also Y1 receives the UPDATE from X0, updates its
table and distributes its UPDATE to X1. This op-
eration introduces a small delay ϵ, so X1 receives
this advertisement at time t1 + ϵ < t1 + τ(X2, d) so
X1 cannot further update X2 because of the MRAI
timers was just activated (and the same happens
with Y2).

This behavior makes X1 send two UPDATE for the
same destination d, the first of which was computed
on outdated information. Worse than that, the cor-
rect UPDATE cannot be propagated to the neighbors
before MRAI expires.

The same behavior could happen in the next
ring of the chain, but in the case the timers
τ(X3, d), τ(Y3, d) on X2 are lower than τ(X2, d) of
X1: they will fire before X1 propagates the correct
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update, so X2 is going to propagate 2 outdated
UPDATE messaged for every message it receives from
X1. So the loophole would repeat twice at this level
and would exponentially explode further down the
chain.

This is a gadget topology identified by Fabrikant
et al. to showcase the effect, but the original pa-
per describes other realistic situations in which the
presence of multi-paths and a decreasing value of
MRAI on the path produces an exponential number
of UPDATE messages and route oscillation.

4. Centrality-based MRAI Configuration

A simple solution to this problem would be to
always use an increasing MRAI compared to the
previous hop. This solution has two drawbacks:
first, routers would need to implement some form
of dynamic coordination per each propagation path;
second, increasing MRAI will slow down conver-
gence.

A better policy would be to have MRAI increase in
the initial phase of the propagation, close to the AS
k that generate the first UPDATE for route r. Then,
when the routers around k stabilize, MRAI should
be decreasing in order to quickly propagate the new
stable topology to the rest of the Internet. To verify
the validity of this intuition we set-up a strategy
that exploits the knowledge of the network graph
together with the concept of Destination Partial
Centrality (DPC).

4.1. DPC - Destination Partial Centrality

DPC is a variant of the so-called load centrality
which is defined in its general form as follows [34].
Consider a graph G(V, E) and an algorithm to
identify the (potentially multiple) minimum weight
path(s) between any pair of vertices (i, j). Let θi,j
be a quantity of a generic commodity that is sent
from vertex i to vertex j. We assume the commod-
ity is always passed to the next hop following the
minimum weight paths, but any routing metric is
valid. In case of multiple next hops, the commodity
is divided equally among them. We call θi,j(v) the
amount of commodity forwarded by vertex v ∈ V
with respect to the vertices i and j. The load cen-
trality of v is then given by:

LC(v) =
∑
i,j∈V

θi,j(v) (1)

DPC adapts load centrality to represent the propa-
gation of routes in an IP network. In DPC the com-
modity corresponds to the number of networks that
a BGP node exports, so only nodes that are directly
connected to destinations generate the commodity.
We call D ⊆ V the set of nodes that export at least
one prefix, and Mi,Mj the number of networks that
are exported by node i and j, respectively, then
θi,j =

Mi+Mj

2 . Considering a router v, θi,j(v) = θi,j
if v is in the path from i to j or zero otherwise. In
all our experiments we assign one destination per
node, so that θi,j is always unitary but this is an
arbitrary choice that can be replaced with any other
suitable one. Considering only the case when nodes
in D export only one prefix, the normalized value of
DPC of any vertex v ∈ V takes the following form:

∆(v) =
1

|D| × (|D| − 1)

∑
i,j∈D

θi,j(v) (2)

DPC does not express load in terms of traffic, but
it captures the impact of an AS in terms of routing
updates it may generate. If one AS exports many
prefixes and it changes its local topology (i.e., adds
or removes a peering edge) this information needs
to be propagated on the Internet to all routers, re-
gardless of the fact the networks actually generate
or receive traffic. DPC also models the fact that
some ASes do not export network addresses so they
do not generate load, but still their centrality can
be larger than zero. In a previous work we have
shown that load centrality can be computed in a
distributed way with minimal modifications to a
Distance-Vector routing protocol [35]. Section 7.3
describes how DPC can be computed in a distributed
manner with an extension to BGP. Our solution can
be incrementally deployed on the Internet without
requiring any global coordination. Further theoreti-
cal details are outside of the scope of this paper, but
principles of centrality-based routing can be found
in [35, 36, 37].

4.2. Tuning MRAI with DPC
Our proposal configures MRAI as a function of

DPC with the following model. We assume the
information contained in the UPDATE message propa-
gates in the network in three phases, which identify
three propagation graphs that we formally define in
Section 4.3:

• Ascending phase graph GA(VGA , EGA);

• Tier one graph GT (VGT , EGT );
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• Descending graph phase GD(VGD , EGD ).

The intuition we follow is that there is an horizon
effect, meaning that a router j close to the node
k that triggers an update has higher chances of
modifying its routing choice than a router i that is
far away from k. This is intuitive if we look at Fig. 1
in which X0 has a choice to make between one path
and another, but once this choice is made, all the
other routers should just keep using the same next
hop they used before the change. Moreover, the
BGP network is hierarchical, we know that there
are ASes of different importance (so-called Tier-1
ASes) that represent a narrow waist of the topology.
Once the UPDATE reaches a tier-1 AS it is less likely it
will trigger any reconfiguration anymore. However,
UPDATE must travel to all BGP routers, because if
the path changes, every router needs to update its
knowledge of the path.

This intuition is reflected in Eq. (3). Considering
a graph-wide maximum timer T = 30 s and DPC
∆(i) ∈ [0, 1] for node i, DPC-based MRAI τ(j, d)
used by node i with neighbor j for destination d is
set as follows:

τ(j, d) =


T
2∆(i) ∀i ∈ VGA

T
2 ∀i ∈ VGT

T ·(1−∆(i))
2 + T

2 ∀i ∈ VGD

(3)

In practice, we increase MRAI in the neighbor-
hood of the node triggering the update to avoid
the effect identified by Fabrikant, and we decrease
it after we reach Tier-1 AS. Centrality is used to
capture the position in the BGP graph that an AS
occupies.

In this work we pre-compute the propagation
graphs and the DPC in advance, in order to verify
that our intuition is correct, however Section 7.3
explains how to design a BGP extension that com-
putes DPC. Together with the theory provided in
[35, 36, 37] this paves the way for a distributed and
incrementally deployable solution.

4.3. Propagating UPDATE messages on the BGP
graph

Following the canonical model used in [38] the
links in the BGP graph G(V, E) can be of two kinds,
either peer-to-peer or customer-provider depending
on commercial agreements. We indicate with Λ =
{π, c, s} the labels indicating peer, customer and
provider respectively. The function λ : E → Λ

assigns to one endpoint i of edge (i, j) the role i has
with respect to j. Hence, λ(i, j) = π ⇐⇒ λ(j, i) =
π, while λ(i, j) = c ⇐⇒ λ(j, i) = s.

We call Ci = {j ∈ Ni : λ(i, j) = s} the set of
customers of node i and define a tier-one AS as
one AS that exports no prefixes, has no providers,
and is in a peering relationship with all the other
tier-one ASes. We indicate as GT (VGT , EGT ) the
fully connected sub graph of tier-one BGP nodes,
such that VGT ⊂ V, EGT = VGT × VGT . The
propagation of a route follows the no-valley and
prefer-customer standard assumption, depicted in
Fig. 2 that we reproduce from [38], which means
that routes learned from customers are announced
to all neighbors, while routes learned from peers or
providers are announced only to customers.

j receives
r from i

λ(i, j)
== c?

j propa-
gates to Cj

j propa-
gates to
Nj \ {i}

n y

Figure 2: Flow chart for UPDATE forwarding.

When a node i ∈ V \ VGT generates an UPDATE
containing a route r, it is propagated to all nodes
using the links of G(V, E), with a very specific pat-
tern of route propagation from i to the rest of the
network (we assume that the majority of the modifi-
cations to the BGP graph come from nodes outside
of VGT ). We model this pattern by sub-dividing
the graph G in three components as the propaga-
tion happens in three phases. In the first phase
node i ∈ V \ VGT generates an UPDATE for route r
and this propagates toward a node z ∈ VGT ; we
call GA(VGA , EGA) the graph made of all nodes
and edges that are involved in this phase. More
formally let i ∈ V \ VGT be the originator of the
first UPDATE and j ∈ V another node in G. Then
j ∈ GA(VGA , EGA) ⇐⇒ ∃ pij a path in G between
i and j, with pij = (i, k0) . . . (kl, j) such that:

• kx /∈ VGT , ∀x = 0, . . . , l;

• any of the following conditions holds:
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1. λ(u, t) = c, ∀(u, t) ∈ pij ;
2. ∃z < l : λ(u, t) = c, ∀(u, t) ∈

pikz , λ(kz, kz+1) = π,
λ(u, t) = s, ∀(u, t) ∈ pkz+1,j .

The first bullet point simply indicates that no nodes
in the path are tier-1. In the second bullet point,
the first condition describes the case in which the
path towards a tier-1 AS is made of only customer-
provider relationships, that is, at each hop we en-
counter a larger ISP (aggregating networks of lower
size). The second condition represents a case in
which the chain of customer-provider edges is inter-
rupted by a peering edge and followed by a path
made of provider-customer edges. Notice that al-
though we define GA(VGA , EGA) with the name as-
cending graph phase, this should not be confused
with tier levels. If a route is propagated by a tier-2
AS to its tier-3 customers, if the whole propagation
path does not include any tier-1 AS, all such nodes
still belong to the ascending graph phase.

The second phase is the one in which the route
propagates in GT (VGT , EGT ) (the tier-1 network),
and the third one is the one in which the route
propagates downwards in GD(VGD , EGD ), the graph
connecting the nodes in VGT to all the nodes in
VGD = V \VGT \ VGA . More formally j ∈ VGD ⇐⇒
∃pij a path in G between i ∈ VGT and j, with
pij = (i, k0) . . . (kl, j) such that:

• j, kx /∈ VGT ∪ VGA , ∀x = 0, . . . , l;

• λ(u, t) = s, ∀(u, t) ∈ pij .

This simply indicates that the UPDATE propagates
along provider-customer relationships.

Note that VGT is fixed and known, and this is
realistic assumption considering that tier-1 ASes are
a few well known ones. However, the ascending and
descending graph depend on the originator node,
but a certain node j can ascertain to which graph
it belongs just by looking at the AS path specified
in the route r.

5. Scenarios

The results we present in Section 6 are obtained
in two different scenarios: one for the Fabrikant-
gadgets as shown in Fig. 1, and the second one
for Internet-like topologies that we generate follow-
ing [38]. Figure 6 shows an example of an Internet-
like topology and Section 7.1 describes the generator
we implemented.

As suggested by the authors of the original paper,
to obtain the route flapping behavior in the chain-
gadget topologies we halve the initial value of the
MRAI timer at each Xi from left to right (Fig. 1).
More formally, the initialization is τ(Xi+1, d) =
τ(Xi,d)

2 , while the initial timer values used by X0 is
set to 30 s, then timers are decremented indepen-
dently. Each Yi node uses the same timer of Xi−1

to propagate routes towards Xi. For these scenario
we consider an increasing number of rings, start-
ing from 2, with 5 nodes, up to 8 with 17 nodes,
whereas for the Internet-like topologies we consider
here topologies with 12 000 ASes; Section 6 presents
the results. We use a modified implementation of
BIRD on the Fed4FIRE+ testbed to run the exper-
iments; the detailed description of the emulator as
well as results on smaller Internet-like topologies
were presented in [3].

In the Internet-like scenario we choose the desti-
nation dr whose route changes from the set of nodes
that induce the worst case situation, i.e., the change
causes a reconfiguration of the largest possible num-
ber of nodes. In both topologies, in order to trigger
the change in the network we use a well known
technique called AS_PATH Prepending, whereby
an arbitrary number of entries in the AS_PATH
list is added forcing the generation of a new BGP
UPDATE. For the Fabrikant gadget we repeat each ex-
periment 10 times, while for the Internet-like topolo-
gies we repeat 10 experiments choosing different
dr to get more variability. In all cases the initial
value of MRAI is subject to a random relative jitter
ρ = 0.05. Every time the timer is reset, a random
value x is drawn from the distribution U [1.0−ρ, 1.0]
and MRAI is set to the default value assigned to
the node and route multiplied by x.

To speed up the initial convergence of the network
we configure only one destination from any node in
D, consistently with the definition in Eq. (2). In all
experiments we start the network emulation, then
wait for the routing tables of all nodes to converge,
and finally trigger the change in dr and measure
the effects of the change till convergence. For the
performance evaluation, we consider convergence
time and the number of UPDATE messages generated.
We repeat each experiment with the following MRAI
strategies:

30 s fixed: the default value according to BGP
RFC [20];

No MRAI : UPDATE messages are sent immedi-
ately without delay, MRAI deactivated.
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Fabrikant style: MRAI will be set on each node
according to the policies described in Fabrikant
work, to reproduce the worst case scenario;

DPC-based: following the centrality computed of-
fline and the formula in Eq. (3).

6. Numerical Results

6.1. Results on Chain Gadgets

Strategy 10th mean 90th

up
da

te
s 30 s 81.6 88.5 95.2

Fabrikant 157.1 201.3 220.8
No MRAI 131.3 133.0 138.1
DPC 63.0 64.2 66.0

co
nv

.[
s] 30 s 146.58 156.40 177.22

Fabrikant 18.14 22.98 25.35
No MRAI 0.19 0.20 0.21
DPC 15.60 16.83 18.60

Table 2: Statistics on the number of updates and the
convergence time for the experiments with a 17 node
chain like the one in Fig. 1.

Table 2 and Fig. 3 report the results for a chain
topology (Fig. 1) with 17 nodes. Table 2 presents
the aggregate results for an easy comparison. It is
clear that the standard 30 s MRAI requires a very
long time (more than 150 s on average) to converge
sending between 80 and 95 UPDATE messages. Fab-
rikant MRAI settings confirm that the predicted
explosion of UPDATE messages happens also with
a real implementation of the protocol. Simply re-
moving MRAI leads to very fast convergence, but
doubles (in this simple case) the number of UPDATE
messages sent, hinting that in larger topologies the
number of UPDATE may clog the system. DPC, the
method proposed in this paper, achieves a conver-
gence time roughly 10 times faster than the standard
30 s setting sending the minimum amount of UPDATE
among the tested solutions. Interestingly, also the
variability of sent UPDATE is minimal, indicating a
very stable behavior.

Figure 3 presents the detailed behavior during the
route change episode. Each line reports the average
of 10 curves (one per run) measured starting form
the time when dr triggers a reconfiguration. The
time axis spans the entire time needed to reach sta-
bility in steps of 1 s, reduced to 1ms for No MRAI
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(d) DPC-based MRAI strategy

Figure 3: Time evolution of MRAI strategies on 17 nodes
chain like the one in Fig. 1.
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because it converges in less than 1 s. The four strate-
gies have a very different behavior. The 30 s MRAI
strategy creates bursts of UPDATE which make nodes
converge gradually. The Fabrikant configuration has
a long phase in which all the nodes (excluding one-
hop neighbors) do not have a valid path. The No
MRAI strategy behaves as expected, convergence is
almost immediate but path exploration generates
more 130 UPDATE messages concentrated in less than
250ms even if the number of nodes is just 17. The
DPC-based strategy does not have a clear pattern
of UPDATE generation as its MRAI is different in
different nodes, but offers a clear improvement over
the previous strategies.
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Figure 4: Convergence time and UPDATE messages with
chains of growing length.

Figure 4 presents the trend of the number of
UPDATE sent and the convergence time as the number
of nodes in the Fabrikant-gadget network (Fig. 1)
grows. Figure 4a reports the average number of
UPDATE messages on chains of growing length and
the exponential growth of the number of UPDATE
messages in the Fabrikant configuration is clearly
visible. Also No MRAI and 30 s have a super-linear
growth, while DPC has a linear growth. Figure 4b
reports the convergence time: DPC substantially
improves Fabrikant configuration and outperforms
the 30 s strategy. No MRAI always converges in less
than a second, and thus is not reported.

Note that since Fabrikant configuration halves the
MRAI at every hop we could not test chains longer
than 17 nodes as the MRAI value would be negli-
gible, and the behavior would probably converge
to the No MRAI one. Nevertheless we can confirm
that:

• Fabrikant configuration is systematically out-
performed by any other strategy, thus we veri-
fied its abnormal trend;

• The No MRAI strategy produces the fastest
convergence but the time-density of UPDATE
messages is not sustainable since it produces
tens of reconfiguration per node in a few hun-
dreds of milliseconds. While this can be handled
in a small gadget, the computational overhead
needed to update routing tables made of tens
of thousands of destinations would not be ac-
ceptable;

• The 30 s strategy prevents path exploration, but
strongly impacts convergence time; and,

• DPC-based configuration seems to provide the
best trade-off between convergence speed and
number of UPDATE messages.

6.2. Internet-like Topologies and Scaling

Strategy 10th mean 90th

up
da

te
s

30 s 106 946 136 563 162 169
DPC 158 237 189 850 210 452

co
nv

.[
s]

30 s 205.9 220.5 235.1
DPC 88.0 89.0 118.1

Table 3: Statistics on the number of updates and the
convergence time (in [s]) for an Internet-like topology
with 12 000 nodes.

Once verified that in the critical topologies de-
signed by Fabrikant DPC-based MRAI proves to be
a viable solution, we report the results obtained on
a 12 000 node Internet-like topology, the largest we
could emulate on Fed4FIRE+. We compare only
the DPC-based and 30 s MRAI strategies since Fab-
rikant configuration is not applicable to a generic
topology, and No MRAI is unfeasible with thousands
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(a) Evolution in time of the 30 s fixed MRAI strategy

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0  20  40  60  80  100
10-2

10-1

1

101

102

103

104

105

N
um

be
r o

f A
S

# 
of

 u
pd

at
es

Time from route change [s]

Conv. ASes RX Updates total updates

(b) Evolution in time of the DPC MRAI strategy

Figure 5: Evolution in time of the two main MRAI
strategies on the same Elmokashfi topology of 12 000
nodes, average of 10 repetitions for each strategy.

of nodes. Table 3 reports the main statistics and
shows that DPC produces in average more UPDATE
messages but converges in just 40% of time needed
by the 30 s strategy.

Figure 5 reports the time evolution of all the ex-
periments for additional insight. The first one is that
the number of UPDATE bursts (the blue curve spikes
in the figure) is reduced with DPC-based MRAI.
This means that the increase in the total number
of messages reported in Table 3 is compensated by
a smaller number or “rounds” necessary to make
BGP converge. DPC-based centrality does not only
reduces the interval between bursts, it eventually
makes each round or UPDATE exchanges more effec-
tive as convergence is faster. The second insight is
that with DPC-based MRAI some rounds of UPDATE
exchanges have a greater effect than others on the
number of nodes that reach convergence; it is an
interesting phenomenon that needs further study, as
it suggests that there are some nodes that are more
important than others, and should converge as early
as possible. With centrality-based MRAI tuning we

would like to help the convergence of those nodes,
and then quickly propagate “good” information to
the rest of the network.

7. Open Source Code and Specifications

Emulating BGP involves a number of complex
steps that are needed to recreate realistic condi-
tions. These steps require the realization of code
and specifications (open source) that are an integral
part of the contribution of this paper. This section
documents our implementation of a realistic BGP
topology generator, the implementation of per neigh-
bor and destination MRAI in the open source BGP
daemon BIRD, and the design of a BGP extension
to support the distributed computation and prop-
agation of DPC. The software is publicly available
both through GitHub4 and Zenodo5.

7.1. BGP topology

We implement the model provided by Elmokashfi
et al. [38], that generates graphs preserving the
structure of the Internet from a stochastic perspec-
tive. Graph nodes represent BGP routers (one per
AS) that can be of four kinds (i.e., Tier-1, Mid-
level, Customer, and Content Provider: {T, M, C,
CP}). Their number, interconnection and peering
agreement is generated based on the analysis of the
Internet topology. Figure 6 reports a generated
network with 1000 nodes.

The graph generator is implemented in Python
and is now integral part of the well known NetworkX
python package, one of the most supported and used
libraries for network science6. Figure 7 shows the
graph generator resource footprint in terms of time
and memory needed on both a normal customer
laptop and a server, respectively in purple and green,
for increasing number of nodes. The first one uses
an Intel I7 7500u cpu (2.7 - 3.5 GHz) and 16GB
of memory, while the second has an Intel Xeon
Silver (2.3 GHz) with 503 GB of memory available.
Overall the normal laptop requires double the time
and resources when generating bigger graphs, but
it is still possible to execute it in a reasonable time
and space.

4https://github.com/internetonfire
5https://zenodo.org/doi/10.5281/zenodo.10721373
6https://networkx.org/documentation/stable/

reference/generated/networkx.generators.internet_
as_graphs.random_internet_as_graph.html
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The topology information is stored in a GraphML
file, a standard format to represent graphs, the nodes
attributes are (we refer the reader to [38] for details
and terminology):

• type {T, M, C, CP}: defines the type of AS;

• destinations: a string of comma separated IPv4
network identifiers (prefixes) with the respective
netmask, indicating the list of networks the AS
exposes.

Given i, j ∈ V, the attributes for an edge (i, j) ∈ E
are:

• type {transit, peer}: indicates whether there
is a customer-provider (i.e., i pays j for transit
or vice versa) or a peering relationship (i.e., i
and j agreed to exchange traffic under certain
conditions for free);

• customer z ∈ V : if the edge (i, j) is of type
transit, z identifies which node between i and j
is the customer. For peer edges, this attribute
is set to “none”.

We also realized a generator of the so-called “chain
gadget” described in the work of Fabrikant et al. [2]
that we used to validate the problem identified there.

7.2. Implementing MRAI on BIRD

As mentioned in Section 1 BIRD does not im-
plement the functionalities necessary to execute ex-
periments with BGP timers: indeed, there is no
notion of MRAI inside the deamon and therefore
all the UPDATE where distributed immediately. We
implemented the MRAI timer following both the
BIRD guidelines but also the specifics of the original
BGP RFC [20], i.e., the initial value of the timer
and the usage of a jitter. BIRD provides the possi-
bility to initialize the nodes through configuration
files, so we included new parameters to tune the new
functionalities for each BGP session:

• mrai_time, which can be used to configure the
MRAI value in milliseconds;

• mrai_type, flag used to distinguish between a
peer-based MRAI timer or, by default, peer and
destination-based timer;

• mrai_jitter, jitter value used to randomize
the MRAI value at every iteration.
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Figure 6: Elmokashfi (Internet-like) topology with 1000
nodes, derived from [38], where Tier-1, Mid-level, Cus-
tomer, and Content-Provider nodes are represented in
orange, green, purple, and cyan, respectively.
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Figure 7: Time and memory used by our Python imple-
mentation versus the number of AS nodes. Results show
the average (the dot), maximum (upper whisker), and
minimum (lower whisker) across 10 independent runs on
an Intel I7 7500u (2.7 - 3.5 GHz) in purple and across
50 independent runs on an Intel Xeon Silver cpu (2.3
GHz) with 503 GB of memory in green.

As the original RFC [20] describes, MRAI is a
timer defined at the BGP-session level, but affects
separately each destination forwarded in that ses-
sion. We anyhow provide the possibility to apply
a single timer to all the destinations that should
be distributed towards that neighbor, by setting
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mrai_type equal to 0. We test one destination per
run so the value of this flag does not affect our
experiments.

We implemented the timer through the introduc-
tion of a specific function and the manipulation of
the outgoing queues. Following the RFC [20], the
timer should not delay the evaluation of new routes
in the Adj-RIBs-In but only the process that takes
the best route from the Adj-RIBs-In and places
it in the “active” table LOC-RIB and further propa-
gate the node decision to the Adj-RIBs-Out queues.
The procedure is executed after the Adj-RIBs-in
evaluation and there can be two possible situations:

• MRAI not active: the UPDATE in the
Adj-RIB-Out can be propagated and, after that,
the timer will be started according to the con-
figured value;

• MRAI active: it is not possible to propa-
gate the new information, so the evaluation of
the best route will be executed once the timer
expires.

The second phase is where MRAI actually affects
BGP behavior, stopping potentially flapping routes
from propagating further and avoiding their distri-
bution. Once the routing table has been updated it
is mandatory to also compute the outgoing queue
Adj-RIBs-Out, substituting the path in the UPDATE
message if a new route becomes the preferred one
or even not doing anything if there has been an
oscillation, i.e., a WITHDRAWAL whose effect is can-
celled by an UPDATE. In the first scenario, after the
distribution of the message the timer will become
active, with a value defined by the combination of
mrai_time and mrai_jitter. Once this timer ex-
pires the function dest_mrai_timeout is triggered
in order to resume the route comparison process.

7.3. The DPC BGP Extension
Here we describe the extension to the BGP proto-

col to support a distributed computation of the DPC
metric. This proposal requires the introduction of
two new parameters that extend the Path attributes
in the UPDATE message, presented in Table 4. These
attributes should be flagged as optional-transitive,
as defined in [20], to ensure that legacy nodes can
ignore but still forward them.

The first attribute, NH, is used to identify the list
of Next Hops (NHs) that the node can use to prop-
agate the route d contained in the UPDATE message.
It is not possible to assume there is only one NH due

Attr. Name Attribute fields

[2 Byte] [Variable size]

NH nNH NH_AS
ASLoad nASL ASL_List

Table 4: Description of BGP parameters for distributed
computation of the DPC metric

to the multi-path peculiarities of BGP and the ca-
pability of the ASes to share aggregated paths. The
first element nNH encodes the number of elements
in the list, and it is a 16 bit object. The second
element is a the actual list of ASes identifiers. Each
AS identifier is 32 bit in size, for a total of size of
nNH×32 bit.

The second object identifies the current load (the
commodity we use to compute DPC of known ASes.
This is necessary for the receiving AS i to compute
its own load and DPC, summing the load provided as
input from the other ASes. As the previous attribute
the first item is a 16 bit counter that identifies the
number of ASes in the list ASL_List. Each object
in the list is a tuple (θ,ASid, t) that describes the
current load θ associated with AS identifier ASid

and a value to describe when the load has been
propagated t. This is necessary to identify outdated
values that are circulating in the network. The
load θ should be encoded with 32 bit and the same
dimension applies to ASid, while t can be store as
UNIX time in milliseconds, following the standard
dimension of 64 bit. In total AS_List has a size
equal to ASLoad×128bit.

A BGP node should keep a dictionary with the
last load values associated with each other AS that
shares its metric. In case of changes to its con-
tent, the new values should be included in the next
UPDATE message sent to the neighbors. Each node
is responsible to update its own load value once the
input ASes metrics changes and then redistribute
the changes.

To let a generic node i compute its input load, it
has to know if neighbor j has chosen it to forward
traffic to d. To achieve this goal we envision three
possible methods:

Periodic Route-Refresh: Node i periodically
asks node j for its current configuration of best
paths. This kind of messages, defined in [39] is
usually done only when there has been a change
in the policy and a re-evaluation is required, but
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in this case can be exploited to acquire more
knowledge of the decision process of other nodes.
This option is fully backward-compatible and
incrementally deployable;

UPDATE back-propagation: Once node j has de-
cided to use node i as best neighbor to reach
d, it includes i into the set of nodes that, ac-
cording to the policies, should be updated. The
message is going to be dumped by i because of
the loop-detection mechanism, but the mecha-
nism can still trigger an update of the centrality
depending on the attributes in the UPDATE;

Traffic analysis: This method requires the coop-
eration of the BGP daemon and a traffic ana-
lyzer. Once the analyzer detects that the neigh-
bor j is forwarding traffic towards i for the
destination d it’s safe to assume that j has
choose i as best neighbor and therefore com-
municate it to the BGP daemon towards a new
internal API.

These modifications to BGP will let the network
self-compute the load value depending on the num-
ber of routes given as input and outputs while still
providing enough flexibility for ASes to obfuscate
the path through aggregation.

8. Conclusions

Conducting Internet-scale research is extremely
challenging for many reasons. One of them is the
performance evaluation of the proposals: It can-
not be tackled with analytic models because they
lack the required detail level, it cannot be easily
conducted with (realistic) simulations because of
computing resources limitation as well as the lack
(again) of realistic models, and it cannot be carried
out with simple lab experiments because they lack
the scale of the Internet. The use of large-scale
testbeds where the proposed solutions are imple-
mented in the real protocols under study is thus a
nearly mandatory tool to make this kind of research
credible.

We have explored in this work the use of the
federation of testbeds provided by Fed4FIRE+ to
evaluate changes in the management of the MRAI
timer of BGP using the BIRD open source imple-
mentation properly modified with our proposal and
other techniques proposed in the literature. The ex-
perimental work has been carefully crafted to make
results easily reproducible (given all the software we

developed and the scripts we have devised are pub-
lic and Open Source), offering the community not
only a detailed description of all the experimental
machinery we have developed, but also the code de-
veloped, the scripts to run the experiments and the
post-processing tools to obtain results and graphs.

An experimental setup that can be used to carry
out research on BGP to help improve the overall per-
formance of Internet global routing has an intrinsic
value; furthermore our contribution also shows that
it is indeed possible to improve Internet convergence
after a route change by properly managing MRAI,
and this without the risk of signaling overhead explo-
sion. We have run experiments with simple topolo-
gies to show that analytic results presented in the
past with simplified models really show up also in
real experiments running actual protocols. Next,
we have clearly explained the theoretical founda-
tions of our proposal, and validated the results with
experiments emulating networks with up to 12 000
ASes, showing that it is possible to modify BGP
to improve Internet routing convergence time after
changes in topology, a fairly frequent event with the
growing number of ASes and prefix destinations.
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